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The statistical mechanics of a melt of polymer rings 
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UK 
$ Max Planck InstiNt Er Polymerfonchung, Main& Germany 

Received 13 October 1994 

Abstract. Topological resuictions are introduced~into a melt of flexible polymer rings by 
specifying the 1inl;ing number between each pair of rings. Attention is focused on the 
configurational properties of a single ring in the melt, where the winding number between 
each pair of rings is zero. The configurations of all the other chains are averaged out in the 
partition sum. The effect of the topological constraint on the remaining chain is expressed as a 
product of two configurational weighting factors which involve unusual geometrical properties 
of the configuration. One is a phase factor depending on the torsion of the configuration and the 
other is a Bollnnann-l&e factor with the self-inductance of the configuration in the role of the 
interaction energy. The term based on the torsion has the remarkable property of transforming 
random walk-like configurations into those of stiff rods, while the inducrpnce term promotes 
a transition to a completely collapsed stak. Our preliminary results suggest that the actual 
configuration of the Iwp is a non-trivial balance behveen these opposing tendencies with the 
size R of the I w p  sraling with the length as Rz - L1-'/I3*) .. 

1. Introduction 

Long chain polymer rings are ideal for studying the role that topology can play in the 
statistical mechanics of condensed matter systems. In a melt of polymer rings a large 
diversity of topological structures can be created by controlling the linking number of e k h  
ring with every other ring in the melt. The topology is conserved since the chains cannot 
pass through each other by virtue of the excluded volume interactions present between the 
chain segments. In contrast, a melt of polymer chains with free ends and excluded volume 
interactions is an amorphous state that cannot support any further topological structure 
other than that represented by the chains themselves. The essential topological features of 
a polymer melt to be accounted for in this paper are shown schematically in figure 1. The 
configuration shown in figures l (u)  and (b )  are topologically distinguished by their winding 
numbers. 

It has long been known from the work of both Flory and Edwards that the configuration 
of a single chain in a melt of interacting chains can be described as a random walk. This 
(remarkable) fact can be explained in terms of an attractive self-interaction induced by the 
density fluctuations in the melt. This acts so as to screen the original repulsive excluded 
volume interactions. The calculation of Edwards [I] can be trivially extended to polymer 
rings by replacing the structure factor of a chain by that of a ring. When this is done there 
are no substantial changes and it is predicted that the configuration of a ring in a melt will 
also be a random walk. However, a simple Floty-type argument by Deutsch and Cates [Z] 
suggests that the size R of an unlinked ring in a melt of unlinked rings in d dimensions 
should depend on the length L as R cs Ld/@+') in three dimensions. Computer 
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Figure 1. (a),(b) Lonps which are configurationally similar but topologically distinct: ( c )  
entangled linear chains cannot sustain the tOpOb%Cal properties of Imps. 

simulation experiments by Pakula and Geyer [3] and Weyersberg and Vilgis [4] also find a 
non-Gaussian exponent of 0.45 for a melt of unlinked rings. 

In this paper we will consider the general problem of the configurational properties of 
a single ring in a melt of rings where the topological smcture can be described in terms of 
1inking.numbers. As a special case, particular attention will be given to the situation where 
all the linking numbers are set to zero, as schematically illustrated in figure I@). This 
would be the case for loops formed in dilute solution and then concentrated. I t  must be 
added that the linking number does not, however, provide a complete discrimination between 
topologically different configurations. Consequently our calculation will refer to a somewhat 
larger ensemble than that of mly unlinked rings. The method we adopt follows in spirit that 
described in Edwards’ paper. The configurations of all the chains, apart from the chosen 
one, are averaged out in the partition sum. This is done by identifying the relevant collective 
variables for the problem and treating them as Gaussianly distributed. The justification being 
that, as they consist of a sum over a m~acroscopic number of individual random variables, 
then the ubiquitous law of large numbers states that they should be Gaussian. The effect of 
the topological constraint on the remaining chain, as a result of this process, is expressed 
as a product of two weighting factors which involve unusual geometrical, as opposed to 
topological, properties of the configuration. One is a phase factor depending on the torsion 
of the configuration and the other is a Boltzmann-like factor with the self-inductance of 
the configuration in the role of the interaction energy. The term based on the torsion has 
the remarkable property of transforming random walk-lie configurations into those of stiff 
rods, while the inductance term promotes a transition to a completely collapsed state. Our 
preliminary results suggest that the actual configuration of the loop is a non-trivial balance 
between these opposing tendencies with the size R of the loop scaling with the length as 
R2 Y L1-I/oR) N Lo.89, 

2. Formulation of the topological problem 

A melt of N, closed random walk loops is considered where the topological relation of each 
loop C, with every other loop Cp (p  = 1,. . . , Nc) in the system is specified by a winding 
number mep. For any pair of loops (or, ,6) the winding number is given by the Gauss result 
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and is a topological invariant. The interest in the role of winding numbers in polymer physics 
stems from the work of Edwards [51, Brereton and Shah [6] and has greatly increased in 
recent years [7-121. 

Since the winding numbers are integers, the constraint that the winding number should 
take a specific value m,p is imposed using a Kronecker delta function 

In this paper we study the configuration C, of a single (labelled) polymer loop LY in a 
melt of polymer loops {Cp]. The topological relation of the labelled loop (Y with the other 
loops (0) in the melt is separated out by the product of factors 

N. 

B f u  
n s{G(c,, cp), map]. 

The topology of the rest of the melt is specified by the product 

3 J{G(Cp, Cy). mppl. 
B>B’#* 

Nc is the total number of chains in the system. Therefore the partition sum Z for the single 
chain is given by 

where Gap G(C,, Cp) and the-averaging is performed over the configurations of the 
unperturbed chains. Later in this paper the Gaussian chain model, based on the Wiener 
measure, will be used. 

The restriction 0’ > 0 prevents double counting of the rings, however, it will prove 
more convenient to work with the complete index range for both 0‘ and p .  

The Kronecker delta function can be parameterized as 

then the partition function (2.2) for the single chain can be written as the Fourier transform: 

where 

(2.4) 

There are two problems: one is the statistical mechanical problem to evaluate 
Z({C,];  (gpp}) given by (2.5) and the second is to perform the Fourier transform (2.4). 
The statistical mechanical problem is considered in the next section. 
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3. The statistical mechanical problem and collective variables 

The statistical mechanical problem is to evaluate Z([C,}; {gar)) given by (2.5). The 
labelled chain n is separated out to give 

M G Brereton and T A  Wlgis 

(3.1) 

where we have reverted to a notation G ( { T ~ ,  T B ] )  for the Gauss winding number that acts 
as a reminder that +e position vectors rp, T P  describing the loop configurations are the 
primary statistical variables. The explicit form for the winding number is given by (2.1). 
which can be written in an alternative form by using the result 

A tangent vector collective variable ua(q) is defined by 

which is the Fourier component of the tangent vector density for a single chain 

u"(R) = dr':S(rU - R). im 
In terms of these collective variables the winding number becomes 

and the partition sum (3.1) becomes 

(3.3) 

(3.4) 

where S2 is the volume of the system. 
Averaging over the polymer variables { T @ )  in (3.6) is too complicated to be practical. 

The way forward is to identify collective variables which involve the sum over all chains in 
the system. By virtue of the law of large numbers the statistical properties of these variables 
can be well approximated by Gaussian statistics. In the present problem a definition of the 
collective variables is not so clear and requires careful attention. 
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For polymer chains in a melt, interacting with each other through an excluded volume 
interaction, the collective variable is the density fluctuation 

A similar variable can be defined for the bond vector density fluctuation 

Nc.N 
zL(q)=G-' q e x p i q . r ? = C d ( q )  

+I ,  j = l  B 

and has been found to be very useful in problems involving polymer blends and di-block 
copolymers [13]. 

The present problem is complicated by the integration variables gpp, which are conjugate 
to the winding numbers mBg' and which act like coupling constants between chains. They 
can be regarded as the elements of a N, x N ,  matrix. The essential step in finding an 
appropriate collective variable is to 'factorize' the chain indices in the term gpg'. TO do this 
it is convenient to introduce the symmetric and antisymmetric variables suo and au5 where 

and change variables 

If the symmetric integration variables sap, are considered as the elements of a matrix s, 
then this may be factorized in terms of another symmetric matrix q so that 

s = q . q  

or 

A collective variable Q,,(q) can now be defined as 

so that terms like 

(3.9) 
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which occur in the partition sum (3.5) can be written entirely in terms of these variables as 
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In terms of the {G?c(q)} the full statistical factor (3.6) can be written as 

(3.10) 

(3.11) 

Since the Qu(q)  are the sum over a macroscopic number Nc of random variables they can 
be considered to be Gaussianly distributed, with the distribution function 

(3.12) 1 
PI*) = & Z F j e x p - ~  Q 0 ( - q ) .  [r(q)i;P&) 

q , U # ' i j ,  

where [r(q)lco? is the correlation function matrix 

2 
w(q)icur = ,(*,tq) ~ d - d ) ~ .  

The average is taken with respect to the unconstrained loops. Using the definition (3.9) for 
* P ( d  

(3.13) I 
[r(q)iscl = p 0 , y ( 4 )  

where y ( q )  is 

y (q )  (dr . dr' expiq . (r - r ' ) ) ~ .  (3.14) 

The complication in using the distribution function (3112) is that the matrix i? must be 
inverted in the N ,  x Nc mamx space of chain labels. The details of this manipulation and 
the Gaussian integration using the distribution function P{@) for the collective variables 
[*a(q)] are given in appendix 1 .  

N N c  4 

The result for the partition function (3.11) can be written & 

where the terms A,,(q; {spy)). B,,(q; [spy)) can be considered as the matrix elements 

(3.16) 
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and r is the matrix given by (3.13). The terms l (q ;  (C& @ ( q ;  (C,)) depend on geometrical 
rather than topological features of the configuration C, of the single chain a and are given 
by 

(3.17) 

and 

The final partition sum Z([C,); [m~,y)) is obtained from Z([C,); [ s ~ p ) )  by integrating over 
the variables spp. This is considered in the next section. 

4. The partition sum Z([C,}; [mpp.}) 

Using the form (3.15) together with (2.4) and (3.7) gives 

where only the dependence on the variables spp has been shown. 
In the remainder of this paper we will consider the simple case of a melt of unlinked 

rings where mgg’ = 0 for all pairs of chains. Even with this simplificatibn the integrals are 
multi-dimensional and the evaluation is further complicated by the fact that the expressions 
involving the variables spp are in an infinite series of matrix forms, e.g. 

Despite the apparent complexity of this final operation the required integrations can be 
performed term by term. The fact that we are dealing with a melt turns out to be crucial 
for the re-summation of these series. The details are given in appendix 2 and the result, 
which we report here, is that the partition function Z([C,]; [mpp = 0)) has the same form 
as Z([C,]: [spa.)) but where the matrix factors A,,(q), Be&) are replaced by 

(4.2) 



1 I56 

1 is a length determined by the number density p = N N J Q  of chain segments each of 
statistical length b so that 
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6 
pb3n2 

l = b -  (4.3) 

For a melt ,ob3 - 1 and hence 1 - b. 

unlinked rings can, therefore, be expressed as the product of two distinct terms 
The configurational weighting factor Z(C,) for a singIe unlinked ring in a melt of 

where 

and 

@((C,)) is known as the wrirhe of the configuration; it has the form of the Gauss winding- 
number formula but applied to a single configuration. It is not a topological invariant and 
will be discussed in detail in the next section. L((C,}) is essentially the self-inductance of 
the C, configuration. 

Equations (4.4)-(4.6) are the major results of this paper. It is noteworthy that the 
coefficient of the self-linking, or writhe term, is independent of any of the physical 
parameters in this problem and is the pure number H. It is present as a phase factor, 
whereas the self-inductance is present as a traditional Boltzmann factor. The influence of 
these terms separately is discussed in the next two sections. 

5. Writhe and the configuration of a single loop 

The statistical factor containing the writhe term is 

(T - r‘) 
dr(s) x dr(s‘) . - 

lr - r’13 ’ 20 = expia@(C) = exp (5.1) 

In the integration, which is around the same Ioop C, it would appear that singularities appear 
when point T = r‘. This problem had been considered long ago by Calugareanu [14] and 
more recently by [7,15-171. The integral is well defined if two curves are created: 

C1: ( r (s ) ]  and CZ: {r(s)  +&n(s)} 

where E is a small parameter which will ultimately be set equal to zero and TI is the principal 
normal to the curve C,, where 

T 
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The Gauss winding-number formula applied to the two curves CI and C2 gives the linking 
number m12 between the two curves. This is the integer 

(5.2) 

If the curve Cz is allowed to approach CI smoothly, i.e. as E -+ 0, Cz -+ CI = C then the 
integer valued left-hand side of the above equation will remain as an integer, whereas on 
the right-hand side there are two contributions: 

1 
mlz = -f f dr’  x d r  ds 

47r c c 
(5.3) 

The first term on the right-hand side is by definition the writhe Q(C) of the curve C ,  
whereas the second term is the integral of the torsion ~ ( s )  of the curve at a point s along 
the curve (see for example [NI), where 

Hence the writhe of a curve is given by 

and the statistical weighting factor can be written as 

Zwr = expixWr(C) = (-1)’”””‘exp - dsr(s). (5.5) 1i 
The presence of the factor K multiplying the writhe is quite vital in eliminating any 
contribution from the unspecified integer terms. The sign ambiguity needs further 
consideration but for the moment will be ignored; in which case the weighting factor can 
be directly related to the total torsion of the curve. 

The polymer configuration can now be described as a closed random walk made up 
of unit tangent (or bond)~vectors {e(s)}. The configuration is weighted by a phase-factor 
dependent on the total torsion of the polymer configuration C .  The configurational properties 
can be obtained from the partition sum 

Z ( R , s ) = I S ( l d r ’ e ( s ’ ) - R  )(l‘ 6 d s e ( s )  ’ I )  exp ( ~ ~ ‘ d s J e ’ e X e ) ) .  lelz (5.6) 

The first delta function ensures that the curve at an arc length s is at the spatial position R, 
while the second delta function ensures that the curve forms a closed loop of arc length L. 

The evaluation of this partition sum Z(R, s) was first given by Polyakov [19,20] and 
created a great deal of excitement (see for example [21-23]). In Polyakov’s work the 
configuration C represented a particle moving in time in two spatial dimensions. He showed 
that the phase factor based on the total torsion is able to transform a boson into a fermion. 
In the present problem in polymer physics the ‘transformation is equally spectacular. If 
the original configuration is regarded as a random walk then the phase factor converts the 
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large scale configuration into that of a rigid rod. Kholodenko 1241 has also considered this 
possibility in the context of the reptation dynamics of polymer chains. 

In detail, the propagator or probability distribution function G(R, s) for the configuration 
is  given by 

M G Brereton and T A  Wlgis 

Z ( R ,  3) 

I d3R Z ( R ,  S) ' 
G(R,  s) = 

This is evaluated in appendix 3 to give 

1 
4 r R s  

G ( R ,  S) = - S(R - s). 

(5.7) 

(5.8) 

This is essentially the propagator for a rigid rod. 

6. Inductance and the configuration of a single loop 

It would be a strange phenomenon if topological entanglements in a melt of flexible 
polymers could transform them into rigid rods, as discussed in [24] and, in fact, there is 
no experimental evidence for this. This extnme situation is partly neutralized if we recall 
that the conservation of the winding numbers gave two weighting factors: one dependent 
on the writhe or torsion of the curve and the other on the self-inductance. In this section 
the effect of the self-inductance is briefly examined, i.e. the effect that the statistical factor 

has on the configuration of a single loop. This looks more like a conventional Boltzmann 
factor which strongly favours globular configurations; that is, this factor is large for 
configurations where the directions of the tangent vectors are continually in antiparallel 
(dr(s) . dr(s') e 0) arrangements and spatially close together (Ir(s) - r(s')l % 0). This 
factor was found in previous work [6,25] and in appendix 4 a crude argument is given 
which suggests that, under the influence of the self-inductance term, the size of the loop 
collapses to the size of a single monomer R - b. A more reliable argument to substantiate 
this claim can be made if the problem is converted into a field theoretic one. This will be 
reported elsewhere. 

The actual configuration of the loops in the melt is determined by the competition 
between the torsion factor and the self-inductance term. The first factor will extend the 
configuration into a rigid rod, while the second would collapse it. This problem has not 
been solved but in the next section we briefly report on a perturbation approach which is 
indicative of the form that the solution may take. 

7. A perturbation calculation 

Separately, the effect of the writhe and inductance on the configuration of a single loop are 
clearly beyond perturbation theory. A perturbation calculation of these effects would appear 
to have little validity; however, the two effects act on the configuration in an opposite manner 
and perhaps the combined effect can be treated perturbatively. The computer simulations 
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[3,4] and the scaling argument of Cares and Deutsch [2] suggest that the size R of rings 
in a melt of unlinked rings is almost Gaussian with R - for true 
Gaussian chains. We present here the results of a perturbation calculation without presenting 
any of the calculational details. (A fuller discussion, including a field theoretic approach, 
will be presented in a later publication.) The result is interesting and possibly indicative. 
The effect of the writhe term is to expand the chain as 

instead of R - 

1 s  
( R 2 h  = sb2 (I + 6 - In (-) s -  + . . .) (7.1) 

where only the leading terms in s - N have been included. 6 is a short length (- 
bond length) cut-off which must be introduced to regularize the integrals that occur in the 
perturbation theory. This result demonstrates that a normalization calculation is required 
similar to that required for a self-avoiding random walk. This is under consideration and 
will be reported on; however, it is interesting to note that a similar calculation performed 
for the self-inductance term leads to a contraction of the chain, given by 

(R2)r .  = sb2 (1 - 4 . 
In this case no cut-off is required but again the separate result shows that perturbation theory 
is not valid since s /b  > 1. However, if the two results are combined, then the leading 
terms can be made to cancel each other if the arbitrary cut-off term S is suitably chosen so 
that 

(R’) = ( R 2 ) ~  + (R2)r. = sbZ (7.3) 

This could be regarded as the first two terms of an expansion which re-sums as 

(7.4) (Rz )  E sb2 ( s - ” ~ ~  ) = s I - l / 3 ~  = s0.89, 

The exponent is pleasingly close to the value 0.9 found in computer simulations. 

8. Conclusions 

Topological restrictions can be introduced into a melt of polymer loops by specifying the 
linking number between each pair of loops. This leads to significant differences in the 
configurational statistics of the loops as compared to a melt of chains with free ends. A 
method has been developed to incorporate into the partition-sum factors which conserve 
the topology. For the case of a single chain in a melt of unlinked polymer loops new 
statistical weighting factors were found which lead to non-trivial statistical mechanical 
problems. These factors weight the single chain configurations by terms which depend 
on the geometic properties of the writhe and self-inductance of the configurations. The 
separate effect of these terms is extreme, with the writhe promoting a random coil-to-rod 
transition, while the inductance tends towards a collapsed coil. Evidence was presented in 
perturbation theory that in the combined effect largely they tend to cancel each other. The 
result is that the exponent describing the expansion of the configuration with the number of 
segments is perturbed from the Gaussian result of 0.5 to 0.45. 
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Appendix 1. The statistical calculation of Z((C,} ;  {gpp’}) 

The essential calculation is the evaluation of (3.1 1) using the distribution function (3.12), 
i.e. 

The integrals can be performed to give 

(Al.3) 
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TO find the matrix M it is convenient to write the inverse as 

[M-’(q)ltj = r-‘(q) 6ij  +r(q)Cqiqj + r(dEijkq (A1.4) [ 
The matrix in ‘the [ ] bracket has the form 

In the limit C + CO this has an inverse: 
k e-’ = uflp(&j - &Gj)  f VBpEijkq 

where 
U = q2[q2 + r2]-I 

v = -r[q2 + r 2 p  
and 

These are to be regarded as matrix equations, e.g. 

(A1.5) 

and the matrix r is related to the original integration variables by (3.13). 
Written out in full the matrix product Cij,a8’ Ji , ,~ , ( -q)M~,Ip~(q)J j , .a . (q)  becomes 

(A1.6) 
where we have used the loop constraint 

q .  u(q) = 0 
and the use of some vector identities, together with 

These manipulations enable the J M J  term to be written as 

W ( - - q )  x u@(q) ’ 9) 
q2 

+ r  
which is essentially the form quoted in the paper. 

It remains to show that the determinant factors in (A1.3) cancel each other. From (A1.4) 

However, since r 
cancel each other. 

N;’, then det(M-’) w det(r-’) and the two determinant factors 
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Appendix 2. The Fourier transform Z((C, ] ;  Is]) + Z({C,}; (m])  

Thc transform to be evaluated is 

M G Brereton and T A  Vilgis 

where Z({C,]: {sjp)) is given by (3.15) and can be written in the form 

z({C,l; spy) = exp W G I ;  sop) 

with 

Zlr-upp, 
Z((C,)) 1 IT 4 s’ da / dsgp [I + &((C,]; s~g,) + . . .]. (A2.3) 

BB’ * 
For the moment we concentrate on the linear terms in E in this expansion, then 

where 

and 

We first consider the integral Baa(q2), then 

The matrix term is expanded 

(A2.5) 

(A2.6) 
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Recall that rpp = (y(q) /N&p and so, for example, the first term in (A2.5) involves the 
multiple integrals 

The presence of the macroscopically large term N, (the number of chains in the system) 
is now vital since it ensures that the most dominant term occurs when all the variables are 
different, p # p. The integrals factorize into . . 

This result generalizes to any power. Hence 

(A2.9) 

y = y ( q )  is the bond-vector correlation function given by 

y ( q )  = p (dr . dr' expiq. (T - r ' ) ) ~  ! 
where p is the number density of monomer units. 

form 
This has been evaluated in [26] and a good approximation can be represented by the 

(A2.10) 

where K is a numerical constant % 6. Hence for q2 < (Nb2)- ' ,  that is for scales of the 
order of the size of a polymer chain, y ( q )  can be approximated by a constant 

1 
y ( q )  = pb2 % - 

b 
since for a melt pb3 x 1. Then for the range of q values of interest 

(A2.11) 

It is noteworthy that in this limit the result is exactly n and is independent of y and hence of 
the density of the melt. The coefficient A,&') of the self-inductance term can be treated 
similarly 
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The matrix term can be expanded and integrated term by term to give 

M G Brereton and TA Wgis 

7%' y 3 z 4  yir' pb 'd  =-=- 
6 Aae(q2) [ y  - y3<  + y 5 $ .  . :] = y- - 

4 6 q2+yzir2 6 
(A2.12) 

in the physically significant q range of qb < 1. 

expansion of (A2.3). The final result is equivalent to replacing the mabix factors 
The factorization and resummation can be extended to the higher order terms in the 

(A2.13) 

Appendix 3. 

The evaluation of 

e ' e e ) ) .  (A3.1) 
Z ( R , s ) = ( S ( l d s ' e ( s ' )  -R)6($ds'e(s'))exp(;lLds' 142  

The average (. . .) over random walk configurations constructed from unit tangent vectors 
is achieved by allowing each tangent vector e(s) to randomly point anywhere in space. 

In order to make use of a relevant literature result [27], the torsion term must be 
expressed as the area A enclosed by the curve swept out by the unit tangent vectors to the 
original curve C. A simple geometry exercise gives 

A = zr(integer) - $ ds z(s). (A3.2) 
C 

Hence the weighting factor due to the writhe of the curve becomes 

iA(IeD expiz@=exp-  dsr(s) =exp- bf 2 .  

Again the integer factors do not contribute except for a further sign ambiguity that has been 
ignored. 

The delta functions in (A3.1) can be parametrized in the usual way, so that 

Z(R, s) = d3k exp(-ik. E) d3q Z(k, q; R, s) s 
where 

Z(k, q; R, s) = De S(e2 - 1) exp -- lLds 'e(s ' )  . B(s', s) + iA((e)) 

and 

s 
-2i(k + q )  
-2iq otherwise. 

s' c s 
B(s' ,s)  = 

(A3.3) 

(A3.4) 



The statistical mechanics of a melt of polymer rings 

The meaning of equation (A3.4) is transformed by using the identity [27] 
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1 De S(e2- 1) exp im ds' e(s')-B(s';.s) exp(-imA((e})) = Tr [ exp[ ds' B(s', s ) .J]  

( A 3 3  

where J is the rotation operator and the trace operation is  performed in the ( j , m )  
representation. 

In this problem m is identified as m = 1/2 (this can be traced back to the fact that 
the coefficient in front of the writhe term in the weighting factor was TC). Therefore 3 can 
be identified with the spinor representation of the rotation group and J represented by the 
Pauli spin matrices J = 0/2.  Hence 

J L  

Z ( k ,  q; R, s) = Tr[exp i(ks + qL)  . a] 
and 

Z(R,  s) = Tr d3kexp(-ik. R) ~ d3q exp.iu. ( L q  +sk). (AM) s 1 
Using the properties of the Pauli spin matrices 

( k  . a)2" = kZ" (%.U)*"+' = (k . up2" and T r u = O  

equation (A3.6) becomes 

Z(R ,  s) = 2 d3kexp(-ik. R) d3q cos(lLq+ ski) .  (A3.7) 

The factor 2 comes from Trl = 2 for the m = 1/2 representation. For large L,'the integral 
can~be evaluated as 

s s 
32n2 f ( L )  

Rs Z(R,  s) = 6(R = s) (A3.8) 

where 
m 

The exact value is not important because it can be accounted for by correctly normalizing 
the final propagator. 

Appendix 4. Configurational collapse 

The partition sum for the polymer loop in the presence of the self-inductance term can be 
written as the path integral 
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where the first term is the Wiener measure describing the random walk statistics of the 
unperturbed chain and the second term is the self-inductance. 

A rough argument to show how the inductance term can lead to a configurational collapse 
of the free chain can be produced by replacing 

M G Brereton and T A  Vilgis 

+ K6(s - s’). (A4.2) 
l i  IrW - W ) I  + L S )  - W)l  

1 

Then the partition function (A4.1) becomes 

(A4.3) 

which describes a new random walk configuration with an effective step length b* given by 

b” = b /  (1 f 7) 7npb3K 
(A4.4) 

and where the distance between two points on the walk is given by the usual result 

((r(s) - r(s’))’) = b’ls - s’l. (A4.5) 

A crude self-consistent estimate for K can be made by taking the original ansatz (A4.2) 
and integrating both sides, so that 

(A4.6) 

The expression (A4.5) for Ir(s) - r(s’)l is used in (A4.6) to determine K self-consistently, 
i.e. 

Using (A4.4) for b* gives 

where K is a numerical constant. Hence 

L b bl KC3- 
1 and b* = Ti C‘ 

The size of the chain is given by 

(A4.7) 

(A4.8) 

i.e. completely collapsed. 
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