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The statistical mechanics of a melt of polymer rings

M G Breretonf and T A Vilgist

1 Department of Physics and IRC for Polymer Science and Technology, University of Leeds,
UK :
1 Max Planck Institut fiir Polymerforschung, Mainz, Germany

Received 13 Qctober 1994

Abstract. Topological restrictions are introduced into a melt of flexible polymer rings by
specifying the linking number between each pair of rings. Attention is focused on the
configurational properties of a single ring in the melt, where the winding number between
each pair of rings is zero. The configurations of all the other chains are averaged out in the
partition sum. The effect of the topological constraint on the remaining chain is expressed as a
product of two configurational weighting factors which involve unusual geometrical properties
of the configuration. One is a phase factor depending on the torsion of the configuration and the
other is a Boltzmann-like factor with the seff-inductance of the configuration in the role of the
interaction energy. The term based on the forsion has the remarkable property of transforming
random walk-like configurations into those of stiff rods, while the inducrance term promotes
a tramsition to a completely coliapsed state. Our preliminary results suggest that the actual
canfiguration of the loop is a non-trivial balance between these opposing tendencies with the
size R of the loop scaling with the length as B2 ~ L1-1/0m) . 0.8

1. Introduction

Long chain polymer rings are ideal for studying the role that topology can play in the
statistical mechanics of condensed matter systems. In a melt of polymer rings a large
diversity of topological structures can be created by controlling the linking number of each
ring with every other ring in the melt, The topology is conserved since the chains cannot
pass through each other by virtue of the excluded volume interactions present between the
chain segments. In contrast, a melt of polymer chains with free ends and excluded volume
interactions is an amorphous state that cannot support any further topological structure
other than that represented by the chains themselves. The essential topological features of
a polymer melt to be accounted for in this paper are shown schematically in figure 1. The
configuration shown in figures 1(a) and (b) are topologically distingnished by their winding .
aumbers.

It has long been known from the work of both Flory and Edwards that the configuration
of a single chain in a melt of interacting chains can be described as a random walk. This
(remarkable) fact can be explained in terms of an atiractive self-interaction induced by the
density fluctuations in the melt. This acts 5o as to screen the original repulsive excluded
volume interactions. The calculation of Edwards {1] can be trivially extended to polymer
rings by replacing the structure factor of a chain by that of a ring. 'When this is done there
are no substantial changes and it is predicted that the configuration of a ring in a melt will
also be a random walk. However, a simple Flory-type argument by Deutsch and Cates 2]
suggests that the size R of an unlinked ring in a melt of unlinked rings in d dimensions
should depend on the length L as R ~ L%/@*D =~ [04 iy three dimensions. Computer
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Figure 1. (a),{b)} Loops which are configurationally similar but topologically distinct; {c)
entangled linear chains cannot sustain the topological properties of loops.

simulation experiments by Pakula and Geyer [3] and Weyersberg and Vilgis [4] also find a
non-Gaussian exponent of 0.45 for a melt of unlinked rings.

In this paper we will consider the general problem of the configurational properties of
a single ring in a melt of rings where the topological structure can be described in terms of
linking numbers. As a special case, particular attention will be given to the situation where
all the linking numbers are set to zero, as schematically illustrated in figure 1(&). This
would be the case for loops formed in dilute solution and then concentrated. It must be
added that the linking number does not, however, provide a complete discrimination between
topologically different configurations. Consequently our calculation will refer to a somewhat
larger ensemble than that of truly unlinked rings. The method we adopt follows in spirit that
described in Edwards’ paper. The configurations of all the chains, apart from the chosen
one, are averaged out in the partition sum. This is done by identifying the relevant collective
variables for the problem and treating them as Gaussianly distributed. The justification being
that, as they consist of a sum over a macroscopic number of individual random variables,
then the ubiquitous law of large numbers states that they should be Gaussian. The effect of
the topological constraint on the remaining chain, as a result of this process, is expressed
ag a product of two weighting factors which involve unusual geometrical, as opposed to
topological, properties of the configuration. One is a phase factor depending on the torsion
of the configuration and the other is a Boltzmann-like factor with the self-inductance of
the configuration in the role of the interaction energy. The term based on the torsion has
the remarkable property of transforming random walk-like configurations into those of stiff
rods, while the inductance term promotes a transition to a completely collapsed state. Our
preliminary results suggest that the actual configuration of the loop is 2 non-trivial balance

between these opposing tendencies with the size R of the loop scaling with the length as
RZ ~ Ll--[/(3:a‘) ~ LO.SQ_

2. Formulation of the topological problem

A melt of N, closed random walk loops is considered where the topological relation of each
loop C, with every other loop Cg (8 =1, ..., No) in the system is specified by a winding
number #yg. For any pair of loops (v, 8) the winding number is given by the Gauss result

= —r%)

[ @1

G(Cmcﬂ)=a_'1£ﬁ Cdr“xdrﬁ-
a i
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and is a topological invariant. The interest in the role of winding numbers in polymer physics
stems from the work of Edwards [5], Brereton and Shah [6] and has greatly increased in
recent years [7-12]. ‘

Since the winding numbers are integers, the constraint that the winding number should
take a specific value m,g is imposed using a Kronecker delta function

1 G(Cy, C,B) = maﬁ'

8{G(Cq, Cp), mop} = {0 G(Cq, Cp) # mag.

In this paper we study the configuration C; of a single (labelled) polymer loop o in a
melt of polymer loops {Cg}. The topological relation of the labelled loop o with the other
foops (8) in the melt is separated out by the product of factors

Ne
[[316(Ca, Cp), mag).
B#a

The topology of the rest of the melt is specified by the product

Ne

[1 8(G(Cs. Cp)mpp).
f=fifa

N, is the total number of chains in the system. Therefore the partition sum Z for the single
chain is given by

A Ne
Z({Cu}, {mpgs}) = < H 8(Gup, Mgg) l—[ 8(Gpgr, mﬁ,s')) o b (2.2)
Bta B> P excopt &

where Gog = G(Cy, Cy) and the -averaging is performed over the configurations of the
unperiurbed chains. Later in this paper the Gaussian chain model, based on the Wiener
measure, will be used. . .
The restriction 8’ > B prevents double counting of the rings, however, it will prove
more convenient to work with the complete index range for both 8’ and 8.
" The Kronecker delta function can be parameterized as

g
88p" .
S(G'ﬁﬁ', m‘gﬁ:) = ./0’ - 2;'6 CXp lgﬁﬁr(Gﬁﬁr — m‘gﬂr) (2.3)

then the partition function (2.2) for the single chain can be written as the Fourier transform:

Ne 2 deaar .
204G g = ] [ S 2(Col (gnoD) exp —igasmse (2.4)
ﬁﬁf:l 0 J'r -

where

Z(Cal: {gap]) = (expizgweccﬂ, cﬂ’))aﬂ e @5)

B except «

There are two problems: one is the statistical mechanical problem to evaluate
Z({C.}; {gper}) given by (2.5) and the second is to perform the Fourier transform (2.4).
The statistical mechanical problem is considered in the next section.



1152 M G Brereton and T A Vilgis
3. The statistical mechanical problem and ceHective variables

The statistical mechanical problem is to evaluate Z({Ca}; {ggsr}) given by (2.5). The
labelled chain o is separated out to give

Z({r*}: (gpp D) = (exp i{ D (8ap + gp)GUr®, 1) + 3 gaa G((rP, P })an i
8 88’ except o
3.1

where we have reverted to a notation G({r%, r#}) for the Gauss winding number that acts
as a reminder that the position vectors ##, ¥ describing the loop configurations are the
primary statistical variables. The explicit form for the winding number is given by (2.1),
which can be written in an alternative form by using the result

rn 1 3 Gk .
Fbr dq;—iexplq-r. (3.2}

A tangent vector collective variable «*(g) is defined by

u*{g) = ?g; dr® expig - ¢ (3.3)
which is the Fourier component of the tangent vector density for a single chain

w(R) = 5€: dr* §(r* — R). (3.4)

In terms of these collective variables the winding number becomes

I o By .
G({r*, r}) = Gop = (2::)3ifd3 u{g) x:z{ 9-g

1 s ug) xvf(—q) ¢
=m L

= ] o (3.5)

and the partition sum (3.1) becomes
1 u*(g) x uP(—q) -
Z(Cai {2p)) = (expﬁ 3 (8ap + £a) ' C9) 9
Bra 4
uf(g) x uf (—gq) -
+ Z 1124 2. q) . (3.6)
P 9 CL R

where  is the volume of the system.

Averaging over the polymer variables {rf} in (3.6) is too complicated to be practical,
The way forward is to identify collective variables which involve the sum over all chains in
the system. By virtue of the law of large numbers the statistical properties of these variables
can be well approximated by Gaussian statistics. In the present problem a definition of the
collective variables is not so clear and requires careful attention,
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For polymer chains in a melt, interacting with each other throngh an excluded volume
interaction, the collective variable is the density fiuctuation

Ne, N
Py = Q! Z expiq - rf.
p=Lj=1

A similar variable can be defined for the bond vector density fluctuation

NeN
ulg) =" Y Bexpig-rf = u(g)
£=1.j=1 B
and has been found to be very useful in problems involving polymer blends and di-block
copolymers [13].

The present problem is complicated by the integration variables ggg, which are conjugate
to the winding numbers mgg and which act like coupling constants between chains. They
can be regarded as the elements of a N, X N; matrix. The essential step in finding an
appropriate collective variable is to ‘factorize’ the chain indices in the term ggg-. To do this
it is convenient to introduce the symmetric and antisymmetric variables syg and dog where

Sup = (—g‘”ﬂ _; £ “) and Qup = (——g"ﬂ ;gﬂ “)

and change variables

Zn ‘ 2 e 2l
d, d . 1 7= af .
fo -—zgﬁ‘g fo % expi{gup + aa)Mag = :'—1.3 fo dags fa ., dsag ei'xp 125,5Mag.

(3.7

If the symmetric integration variables sgg are considered as the elements of a matrix s,
then this may be factorized in terms of another symmetric matrix 77 so that

s=n-7
ar

Spp = Z Mgy v8- : (3.8
'y
A collective variable ¥, (g) can now be defined as
NL‘
To(g) = ) Moptip(@) (3.9)
B=l
so that terms like

Ne
3 eppuf @) x ' (—g) - q
fF=1
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which occur in the partition sum (3.5) can be written entirely in terms of these variables as

N R
D W () X T (—9) - @ (3.10)
=]

In terms of the {¥, ()} the full statistical factor (3.6) can be written as

u*(g) X ¥, (—q) - q)
g (Cp)

2
Z({Cal: {sper}) = (BXP ) Z Nao
o

+(exp_1_zwg(q)xq;a(—q)-q> _ 311
45 q 1Cal

Since the ¥, (g) are the sum over a macroscopic number N; of random variables they can
be considered to be Gaussianly distributed, with the distribution function

PE) = VaT Heop-2 T ¥(-9) T@LL Tl (12

g0 i’

where [T(g)]eor is the correlation function matrix

2
T = 5(‘1’0(@) . ‘Da'(_QJ)D-

The average is taken with respect to the unconstrained loops. Using the definition (3.9} for
Fs(g)

1
(F(@)ea = ESGG'V(Q) (3.13)
where y(g) is
NN, , . ,
vig) = —Q—é(dr-dr expig - (v — m)o. (3.14)

The complication in using the distribution function (3.12) is that the matrix I" must be
inverted in the N, x N, matrix space of chain labels. The detatls of this manipulation and
the Gaussian integration using the distribution function P{¥} for the collective variables
{¥4(g)} are given in appendix 1. ’

The result for the partition function (3.11) can be written as

Z(Cal; (sps)) = exp —é S [Aaala; IsspD@: (Cah) — Bualgs lsap D (g; (Cu] (B.15)
g

where the terms A,y (q; {Sgar})s Baa(d: {sgpr}) can be considered as the matrix elements

N, re1™
Aaa(g: (SppY) = — 1“2[1 ——]
(g: {5} V(Q){ TP }W

N, [r3 [ 1‘2]“
a ; 13 — — — 1 3'1
Byalg: {spe D ) {qz tz . (3.16}
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and I s the matrix given by (3.13). The terms I{g; {C.}), ¢(g; {C.}) depend on geometrical
rather than topological features of the configuration C, of the single chain o and are given

by
I(g; {C.}) = w =% dr(s) - dr(s’) expiq - (r(;‘) —r(s)) (3.17)
g Cu g
and
S (Ca]) = ulg) X u(—q) - ¢ =.?g dr(s) x dr(s) .lePiq - (7 (s) mr(s’)). (3.18)
g* Ca g*

The final partition sum Z({Cy}; {mgg]) is obtained from Z{{C,}; {ss2}) by integrating over
the variables sggr. This is considered in the next section.

4, The partition sum Z({C.}; {maa})

Using the form (3.15) together with (2.4) and (3.7) gives

1 g 2w —agy -
Z({Cy): {mﬁﬂ,})=]'[; fu dagg f dsgg exp(i2sgemps) Z({Cu); p87)
ﬁﬁf ﬂﬂ ’ -

1 T - ZJT—a‘a‘g-’
=[1= f dagy f dspgr exp(i2sgpmpp)
,Bﬁ‘ 2 0 epr

1
 exp gy 2 lAun (53D = Buallsp )0 @D

where only the dependence on the variables sggr has been shown.

In the remainder of this paper we will consider the simple case of a melt of unlinked
rings where mgg = 0 for all pairs of chains. Even with this simplification the integrals are
multi-dimensional and the evaluation is further complicated by the fact that the expressions
involving the variables sgg are in an infinite series of matrix forms, e.g.

2

- —1
r 1
Agalq) = {1"2 [1 + ——2] } "z E raﬁr‘g(x——z- E ToplgyTysDsat---.
q oo B g Byé

Despite the apparent complexity of this final operation the required integrations can be
performed term by term. The fact that we are dealing with a melt tarns out to be crucial
for the re-summation of these series. The details are given in appendix 2 and the result,
which we report here, is that the partition function Z({C,}; {mgg = 0}) has the same form
as Z({Cy}: {spp}) but where the matrix factors 4,,(g), Bue(q) are replaced by

pbPm?
6b

i
Algh ") — 7 : : (4.2)

and

B({g): ¢») — =
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! is a length determined by the number demsity p = NN./Q of chain segments each of
statistical length b so that

6
I=b——. - : - 4.3
prER (4.3)
For a melt p&° ~ 1 and hence [ ~ b.
The configurational weighting factor Z(C,) for a single unlinked ring in a melt of
unlinked rings can, therefore, be expressed as the product of two distinct terms

Z({Cop) = Zo({CDZL({Cu}) = explin @({Ca ] exp [_%L({Ca})] (4.4)

where
OUCa) Z¢(q (o = - ff T E ) *.5)
Cu
and
dr-d
LUCH = = Zt(q (€)= o ){f -"3-—""—. “6)

®({C,}) is known as the writhe of the configuration; it has the form of the Gauss winding-
number formula but applied to a single configuration. It is not a topological invariant and
will be discussed in detail in the next section. L({C,}) is essentially the self-inductance of
the C, configuration.

Equations (4.4)-(4.6) are the major results of this paper. It is noteworthy that the
coefficient of the self-linking, or writhe term, is independent of any of the physical
parameters in this problem and is the pure number 7. It is present as a phase factor,
whereas the self-inductance is present as a traditional Boltzmann factor. The influence of
these terms separately is discussed in the next two sections.

5. Writhe and the configuration of a single loop

The statistical factor containing the writhe term is

(r—79)

[r =P

Zo = expimr ®(C) = exp % 56 dr(s) x dr(s") . (5.1
c

In the integration, which is around the same Ioop C, it would appear that singularities appear
when point » = ', This problem had been considered long ago by Calugareanu [14] and
more recently by [7,15-17]. The integral is well defined if two curves are created:

Ci:{r{n)} and Co: {r(s) + enl(s)}

where & is a small parameter which wili ultimately be set equal to zero and = is the principal
normal to the curve C;, where

£
lé]

7

= Wl
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The Gauss winding-number formula applied to the two curves C; and C; gives the linking
number my; between the two curves, This is the integer

(r! —r?)

et (5.2)

1
m12=G(C"CZ)=Z;5£ dr! x dr?-
<

If the curve C; is allowed to approach Cy smoothly, t.e. as ¢ — 0, C; — C) = C then the
integer valued left-hand side of the above equation will remain as an integer, whereas on
the right-hand side there are two contributions:

1_ 2
mp = —% f dr! x dr?. ( ) 2::.% T(S) ) r(s) ds. (5.3)

- T2|3 |7(s)P?

The first term on the right-hand side is by definition the writhe ®(C) of the curve C,
whereas the second term is the integral of the torsion z(s) of the curve at a point s along
the curve (see for example [18]), where

7(5) - F(5) X 7(s)
[#(s)(?

Hence the writhe of a curve is given by’

T(s) =

1
D ({Cq}) = integer — — }g T(s)ds (5.4)
2r [od
and the statistical weighting factor can be written as
Zwre = expin Wr(C) = (—1)"° exp % f ds z(s). (5.5)
. o

The presence of the factor 7 multiplying the writhe is quite vital in eliminating any
contribution from the unspecified integer terms. The sign ambiguity needs further
consideration but for the moment will be ignored; in which case the weighting factor can
be directly related to the total torsion of the curve.

The polymer configuration can now be described as a closed random walk made up
of unit tangent (or bond) vectors {e{s)}. The configuration is weighted by a phase-factor
dependent on the total torsion of the polymer configuration C. The configurational properties
can be obtained from the partition sum . ’

5 L —i
Z(R,s)=<a(f ds’e(s’)-—R)B(/ ds'e(s'))exp(—'f d'ﬁf)). (5.6)
0 0 2 Jo lef?

The first delta function ensures that the curve at an arc length s is at the spatial position R,
while the second delta function ensures that the curve forms a closed loop of arc length L.

The evaluation of this partition sum Z(R, s} was first given by Polyakov [19, 20} and
created a great deal of excitement (see for example [21-23]). In Polyakov’s work the
configuration C represented a particle moving in time in two spatial dimensions. He showed
that the phase factor based on the total torsion is able to transform a boson into a fermion.
In the present problem in polymer physics the transformation is equally spectacular. If
the original configuration is regarded as a random walk then the phase factor converts the
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large scale configuration into that of a rigid rod. Kholodenko [24] has also considered this
possibility in the context of the reptation dynamics of polymer chains.

In derail, the propagator or probability distribution function G{I, 5) for the configuration
is given by

Z(R,s)
G =, .
B9 = T orZES) 57
This is evaluated in appendix 3 to give
1
G = ——3§(R—5). .
(R, 5} = 3R —5) (5.8}

This is essentially the propagator for a rigid rod.

6. Inductance and the configuration of a single loop

It would be a strange phenomenon if topological entanglements in a2 melt of flexible

polymers could transform them into rigid rods, as discussed in [24] and, in fact, there is

no experimental evidence for this. This extreme situation is partly neutralized if we recall

that the conservation of the winding numbers gave two weighting factors: one dependent

on the writhe or torsion of the curve and the other on the self-inductance. In this section

the effect of the self-inductance is briefly examined, i.e. the effect that the statistical factor
1

Z; =exp—L(Cy) =exp— |:—5£ M}

AT ey 6

has on the configuration of 2 single loop. This looks more like a conventional Boltzmann
factor which strongly favours globular configurations; that is, this factor is large for
configurations where the directions of the tangent vectors are continually in antiparallel
(dr{s) - dr(s") < 0} arrangements and spatially close together (|r{s} — v(s"}| =~ 0). This
factor was found in previous work [6,25] and in appendix 4 2 crude argument is given
which suggests that, under the influence of the self-inductance term, the size of the loop
coliapses to the size of a single monomer R ~ b. A more reliable argument to substantiate
this claim can be made if the problem is converted into a field theoretic one. This will be
reported elsewhere.

The actual configuration of the loops in the melt is determined by the competition
between the torsion factor and the self-inductance term. The first factor will extend the
configuration into a rigid rod, while the second would collapse it. This problem has not
been solved but in the next section we briefly report on a perturbation approach which is
indicative of the form that the solution may take.

7. A perturbation calculation

Separately, the effect of the writhe and inductance on the configuration of a single loop are
clearly beyond perturbation theory. A perturbation calculation of these effects would appear
to have little validity; however, the two effects act on the configuration in an opposite manner
and perhaps the combined effect can be treated perturbatively. The computer simulations
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[3,4] and the scaling argument of Cates and Deutsch [2] suggest that the size R of rings
in a melt of unlinked rings is almost Gaussian with R ~ L% instead of R ~ L% for true
Gaussian chains. We present here the results of a perturbation calculation without presenting
any of the calculational details. (A fuller discussion, including a field theoretic approach,
will be presented in a later publication.) The result is interesting and possibly indicative.
The effect of the writhe term is to expand the chain as

2y o2 s_ Lo (5.
(RY o = sb (1+\/; 3nln(s)_+ ) | (7.1)

where only the leading terms in s ~ N have been included. § is a short length (~
bond length) cut-off which must be introduced to regularize the integrals that occur in the
perturbation theory. This resnit demonstrates that a normalization calculation is required
similar to that required for a self-avoiding random walk. This is under consideration and
will be reported on; however, it is interesting to note that a similar calculation performed
for the self-inductance term leads to a contraction of the chain, given by

(R*), = sb* (1 - \/g) } (7 2)

In this case no cut-off is required but again the separate result shows that perturbation theory
is not valid since s/ > 1. However, if the two results are combined, then the leading
terms can be made to cancel each other if the arbitrary cut-off term & is suitably chosen so
that

- 2 e (1— Lin(s
(R*) = (R*)¢ + (R*)L =sb (1 3E‘ln (6)) . (7.3)

This could be regarded as the first two terms of an expansion which re-sums as
(R?.) ~ sz (S—I/S:u') — Sl—-!/'ﬂn’ — SO'BQ. ' (7-4)

The exponent is pleasingly close to the value 0.9 found in computer simulations.

8. Conclusions

Topological restrictions can be introduced into a melt of polymer loops by specifying the
linking number between each pair of loops. This leads to significant differences in the
configurational statistics of the loops as compared to a melt of chains with free ends. A
method has been developed to incorporate into the partition-sum factors which conserve
the topology. For the case of a single chain in a melt of unlinked polymer loops new
statistical weighting factors were found which lead to non-trivial statistical mechanical
problems. These factors weight the single chain configurations by terms which depend
on the geometric properties of the writhe and self-inductance of the configurations. The
separate effect of these terms is extreme, with the writhe promoting a random coil-to-rod
transition, while the inductance tends towards a collapsed coil. Evidence was presented in
perturbation theory that in the combined effect largely they tend to cancel each other. The
result is that the exponent describing the expansion of the configuration with the number of
segments is perturbed from the Gaussian resuit of 0.5 to 0.45.
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Appendix 1. The statistical calculation of Z{({C.}; {gaa})

The essential calculation is the evaluation of (3.11) using the distribution function (3.12),
i.e.

1
2UCa): (g ) = VIrT ) [ D¥perp = Y- (u(-0) - T Ngp - Uy @)
q.5.8

1 [ F X Tg(—gq)- u%(g) x Wg(—g) -
XGXP—Z{ 5@ qzﬁ DGy 0y @ qzﬁ( 9) q]_

i
q
(Al

Since we are dealing with closed loops there is the constraint
g-¥s(g)=0.

This can be included as a term

exp —-% Zq: Clg Ty (q.*))2 where C — co.
The problem (Al.1) has the matrix form

1
Z(Cal (5D = VT [ Di¥lexp—2 3 E@U @F@)+2Y¥(=0) - T@)
q g

(A1.2)
where
i v s 8ijkg"
M~ Dk pp = [T7 (q)lgprd; + 8ap po -+ Caig;
and
u®(g) x g
Jup(g) = nag——‘;z .
The integrals can be performed to give
~/detT"! 1 « ’
Z({Cu} {gh) = —=exp— Z Jiap (—q) Mij, o (G ;05 (q)- (A1.3)
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To find the matrix M it is convenient to write the inverse as
£rg”
(M) =T () [Su + T (@)Cqq; + F(q)"qu} . (Al.4)
The matrix in the [ ] bracket has the form |
ik

Opp = 8ap:8] + Tpp@)Caigy + Tppr ‘;2 .

In the limit C — co this has an inverse:
07 =Upp (85 — G:4)) + Vepeiped" (A1.5)

where
U = g*g* + 2!
and _
V = -T[g*+ 3!
These are to be regarded as matrix equations, e.g.

Ne
Vg = — Z Teol(g> + T3 op
=1
and the matrix [" is related to the original integration variables by (3.13).
Written out in full the matrix product 3, B Jf,n—ﬁ-’(—q)Mf;’lﬁ‘B; ()05 (g) becomes

Z Jiog(—q )M;]ﬂﬁ, G);ap (q)
0.

{u*(—q) x —q} - {u“(g) % g}
. qz
{u*(—q) x —q} x {u*(g) x g} - ¢
q4

= Z ??a,s{i"[qz + 1—-2]——1 }ﬁﬂ’ﬂ,ﬂ'ox
BF

+ 3 1ep{T20g% + T2 gt
BB

(Al.6)
where we have used the loop constraint
q-u{g) =0
and the use of some vector identities, together with
’ 1
Tap = v(@) D npotles-
¢ T

These manipulations enable the JM J term to be written as

- N, -
3 IpMTiIg) = ——2 [rz[qz +r [u (—g) - u%(@)
(W (—g) x v (g) - @) H
q aw
which is essentially the form quoted in the paper.
It remains to show that the determinant factors in (A 1.3} cancel each other, From (Al.4)

ke
det(M—-]) — det(l"_])det ([6” +- ch;q,l + r‘al.]kzq ]) .
q

+I

However, since I' &~ N', then det(M~") ~ det(l"") and the two determinant factors
cancel each other.
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Appendix 2. The Fourier transform Z({C,}; {s}) — Z({C,}; {m]D)

The transform to be evalpated is
1 T M—aﬂﬂf
zdcah =] = [ da j dsgar Z({Co}; 58 (A2.1)
B8 ] gyt

where Z({C.): {ssp}) is given by (3.15) and can be written in the form
Z({Ca}; 5pp) = exp B({Ce}); 588) (A22)
with

1
B(Cuki sp) = — 5 D_Aual@: 155Dl (@) + Bua(g: {55 baa(@)]-
)

The exponential factor in (A2.2) is expanded and the integrals are done term by term so
that

1 T 2l ppr
Z({Ca)) z[‘[;if daf dsgr 1 + BU{Cals sge) + -] (A23)
B 0 gt

For the moment we concentrate on the linear terms in E in this expansion, then

1
ZCh =1~ 5 Z[Aau(gz)luu(g) + Bao (Qz)d}au@') + -] (A2.4)
q
where
5 1 m 27 ~dipgr
Aua(g®) = I—[;f daf dspp Awel(q; (seg D)
BB 0 dpg

and

2 1 x 2t ~ttgg
Buatg®) =[] 5 | s dsgp Baa(a; (55w )-
ﬁﬂ' 0 aﬂﬂl

We first consider the integral Bye(g?), then

1 4 2 —aggt
Bczcz(qz) = I—I _zf ddf dsgp Bua(g; {sﬁﬁ'})
ﬁﬁ; x 1] tlp r

i x 2 g N 13 r? -1
=[]= f da f dsgp —— [—5 [1 + -5} . (A2.5)
ﬂ,ﬁr T ﬂ amy }’(Q> g q o

The matrix term is expanded

r3 1t 1 I
—2[1+—2] =-5F3[1—-—~+——“-]. (A2.6)
q g q
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Recall that ['gpr = (¥ (g)/Nc)sgp and so, for example, the first term in (A2.5) involves the
multiple integrals

Ne 1 T 2wty 1 Ne
H - A ddﬁﬂff dSﬁﬁ,.--[Ev—z H Saﬁ3ﬁ5r33ra:|. (A27)

2
ggr=1 7 et ¢ gt

The presence of the macroscopically large term N, (the number of chains in the system)
is now vital since it ensures that the most dominant term occurs when all the variables are
different, 8 # £’. The integrals factorize into .

1 Z[lfrd fzz_“”'d ]3 S LSRN ICY)
—_— -_— lag S‘gl.s‘ﬁr = — T =m. "
N2 G latJo T Jay S T

This result generalizes to any power. Hence
1 3 Zﬂ—ﬂﬁﬁf
By (qZ) = 1_[ = [ dagﬁ:f dSﬁ,B' Boo(q; {Sﬁﬁ’})
700 %

1 23[ ”22 -"742 ]
=—=y’ | l—-—=y"+—=p°—--
q? g2 g*

23
¥y .
=" - A29
qZ 4+ 71-2?2 ( )

y = y({g) is the bond-vector correlation function given by

v@=p j!g(dr -dr’ expig- (r — ))o

where p is the number density of monomer units.
This has been evaluated in [26] and a good approximation can be represented by the
form

q?.NbZ

py (A2.10)

¥(gq) = pb?

where « is a numerical constant & 6. Hence for g% < (N5%)~!, that is for scales of the
order of the size of a polymer chain, y(g) can be approximated by a constant

1
= b2 -
v@ =p 3
since for a melt p&* ~ 1. Then for the range of g values of interest
2.3
vy " o
Prnr % ad Balg)=m (A2.11)

it is noteworthy that in this limit the result is exactly 7 and is independent of y and hence of
the density of the melt. The coefficient A,.(g?) of the self-inductance term can be treated
similarly

5 1 T 2w =gy
Aslg”) = H; fu da fﬂ dsgg Aaalg; {5g8})
i R

B8
gl

sz°)|ir2[1+r—2] } )

vig q e

1 b In—agy
=]|—= da f dsgag
lﬁ;l HZ j'; R uﬁﬁr ﬁﬂ
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The matrix term can be expanded and integrated term by term to give

T 2 :.T4
Agalg?) = [}'—6— -y’ s

(42.12)

in the physically significant g range of gb < 1.
The factorization and resummation can be extended to the higher order terms in the
expansion of (A2.3). The final result is equivalent to replacing the matrix factors

Awo(g; {Sppr}) — 7
Bua(g; {sae'}) — pb*w?/6
in {A2.2) for Z({Cy}; sggr} to get Z({Ce}).

(A2.13)

Appendix 3.

The evaluation of

s L _: oL Lo B
Z(R,s):(s( j; ds’e(s’)-—R)é‘( fo ds'e.(s'))exp(-fI fo ds’e—%—e)). (A3.1)

The average {...} over random walk configurations constructed from unit tangent vectors
is achieved by allowing each tangent vector e(s) to randomly point anywhere in space.

In order to make use of a relevant literature result [27], the torsion term must be
expressed as the area A enclosed by the curve swept out by the unit tangent vectors to the
original curve C. A simple geometry exercise gives

A = 2 (integer) — 56 ds 7{s). (A3.2)
c

Hence the weighting factor due to the writhe of the curve becomes

expit® =exp - .?g ds 7(5) = exp —— 1 {{e}

Again the integer factors do not contribute except for a further sign ambiguity that has been
ignored.
The delta functions in (A3.1) can be parametrized in the usual way, so that

Z(R,s) = f d*k exp(—ik - B) f &g Zk, q; R, 5) (A3.3)
where
Zk,q; R, 5) = f De 8(e* — 1} exp —3 /; Lds’e(s’)-B(s’, 5} +iAde}) (A3.4)
and

—2if{k + g} g <s
—2ig otherwise.

B(s', 5s)= {
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The meaning of equation (A3.4) is transformed by using the identity [27]

L

fDe §(e’—1) expim f ds" e(s)-B(s',.s) exp(—imA({eD)) =Tt [expfds’ B, s)-J:I
A ‘ ‘ .

(A3.5)

where J is the rotation operator and the trace operation is performed in the (f, m)
representation.

In this problem # is identified as m = 1/2 (this can be traced back to the fact that
the coefficient in front of the writhe term in the weighting factor was =). Therefore J can
be identified with the spinor representation of the rotation group and J represented by the
Pauli spin matrices J = o/2. Hence

Z(k, q; R, s) = Trlexpi(ks + qL) - ol
and

Z(R,5)=Tr f Pkexp(—ik - R) f d*g expic - (Lg +5&). {A3.6)

Using the properties of the Pauli spin matrices _

(ko) =i k- o)t = (k- oYk and Tro =0
equation (A3.6) becomes

Z(R,5) =2 f Prexp(—ik - R) f d3q cos(|Lg + sk|). (A3.7)
The factor 2 comes from Tr1 = 2 for the m = 1/2 representation. For large L, the integral

can be evaluated as

3252 F(L)

Z(R,5) = Rs

{R=rs) (A3.8)
where

F) = f~ g dgcos(Ly).

=3

The exact value is not important because it can be accounted for by correctly normalizing
the final propagator.
Appendix 4. Configurational collapse

The partition sum for the polymer loop in the presence of the self-inductance term can be
written as the path integral

, T(s) -7
fDr(s)cxp |:—-- fdsr () — —#d ) =T ')I:| {Ad.1)
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where the first term is the Wiener measure describing the random walk statistics of the
unperturbed chain and the second term is the self-inductance.

A rough argument to show how the inductance term can lead to a configurational collapse
of the free chain can be produced by replacing

1 N ( 1 }
[r(s) — r(s)] [r(s) — r(sD]

Then the partition function (A4.1) becomes

Z{r*} ccexp [—3—1- (1 + -?’;(—b) fds fz(s):‘ {A4.3)

- Ké(s — 5). (A4.2)

which describes a new random walk configuration with an effective step length b* given by

TaphK
*=h 14— X
b / ( + 2 ) (Ad.4)

and where the distance between two points on the walk is given by the usual result
{(r(s) = rsN?) = b*ls = 5. (A4.5)

A crude self-consistent estimate for K can be made by taking the original ansatz (A4.2)
and integrating both sides, so that

dsd KL. )
.[ f (Ir(S) -r(S’)I) (84.6)

The expression (A4.5) for [r(s) — r(s”}| is used in (A4.6) to determine K self-consistently,
ie.

L L 1
dsds’ —————— = KL.
fo fo (B*|s = s)112

Using (A4.4) for b* gives

1, 3k\/?
4= /2 —
(b + ) kL =KL

where x is a numerical constant. Hence

L b b
m = d R — o —, -
K ] an b "I A4.7)
The size of the chain is given by
RR=bLrbl~p (A4.8)

i.e. completely collapsed,
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